Space Agency research could help long stay hospital patients

0
269
Space Agency technology

Research to help astronauts maintain their muscle mass in zero gravity could be used to help long stay hospital patients.

Researchers are planning to safely spin patients in a ‘human centrifuge’ with the hope that doing so will help maintain the size, quality and strength of muscles.

The UK Space Agency is supporting the research which aims to help those facing long hospital stays or suffering from lower back pain. The research could also benefit astronauts, who experience muscle loss in space, on board the International Space Station or on future missions to the Moon and Mars.

The reduced gravity in space makes it difficult for the human body to maintain muscle mass and bone density.

Science Minister Chris Skidmore said: “By learning about how to tackle muscle wasting in astronauts who experience zero gravity in space, this pioneering research hopes to lessen the impact on future spaceflights, something which will be particularly important if we ever send humans on the long journey to Mars.

“It has benefits on Earth too, helping the thousands of patients who develop muscle weakness from lengthy stays in a hospital bed.”

The new research projects at Manchester Metropolitan University and Northumbria University are also supported by the European Space Agency (ESA), NASA and the German Aerospace Centre (DLR).

The project at Manchester Metropolitan University is led by Professor Hans Degens’ team from the research centre for Musculoskeletal Science and Sports Medicine.

The team will perform a series of medical tests on volunteers subjected to 60 days of bed-rest, which mimics the microgravity conditions of space travel. But some will also spend 30 minutes each day strapped into the human centrifuge, where they lay flat as it spins, simulating the force of gravity experienced when standing on Earth.

Professor Hans Degens said: “Currently astronauts have to exercise for up to 2.5 hours every day, take nutrient supplements, and keep high protein diets to maintain muscle mass while they are in space. Despite this, severe muscle deterioration still occurs.

“One day, astronauts might have a daily quick spin in a centrifuge on the ISS rather than spend hours on gym equipment in space. For hospital patients it could greatly improve their recovery during rehabilitation and after they leave.”

The team from Northumbria University’s Aerospace Medicine and Rehabilitation Laboratory, led by Professor Nick Caplan, is interested in spinal postural deconditioning, an issue linked to lower back pain and age-related problems with balance.

The study will use the human centrifuge to explore the effectiveness of daily exposure to artificial gravity in preventing spinal problems from developing. It will also test the effectiveness of a rehabilitation device – which resembles a customised gym cross trainer and is known as the Functional Re-adaptive Exercise Device (FRED) – in the early weeks following the 60 day bed rest period.

Professor Nick Caplan said: “The bedrest study is providing an ideal platform for us to determine how suitable our device is for use in the rehabilitation of astronauts when they have spent time aboard the International Space Station in microgravity

Useful links

Research centre for Musculoskeletal Science and Sports Medicine

Northumbria University’s Aerospace Medicine and Rehabilitation Laboratory

LEAVE A REPLY

Please enter your comment!
Please enter your name here